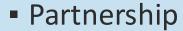
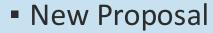
THE PA SCIENCE DMZ

Wayne Figurelle

Assistant Director


Institute for Computational and Data Sciences (ICDS)

Penn State



PA-DMZ PARTNERSHIP

- Growing research networking connectivity needs in smaller institutions
- KeystoneREN/KINBER planning grant
- Penn State land grant mission and ICDS strategic goals

- NSF Program (CC): Campus Cyberinfrastructure
- New Institutions New Use cases
- New capabilities
- Novel approach
- PI: Wayne Figurelle, Penn State University

Wayne Figurelle
Asst. Director for
Innovation and Outreach,
Penn State University

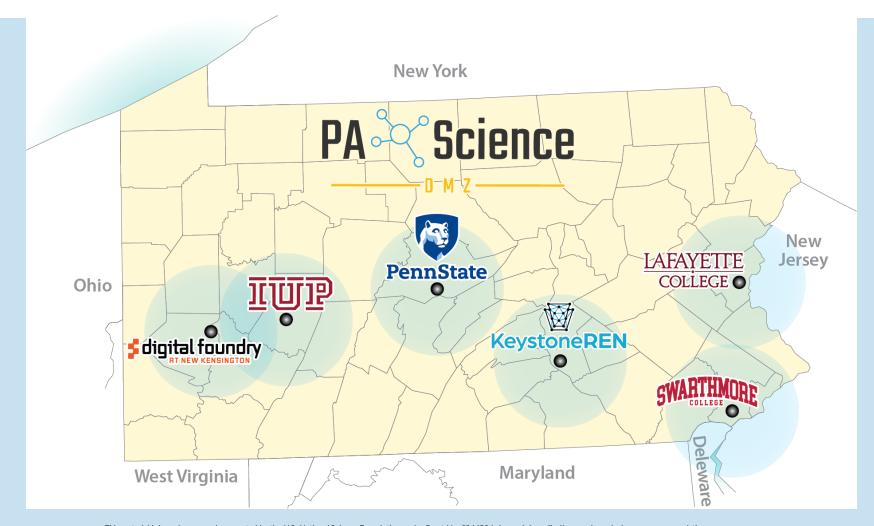
Dr. Rick Adkins
Professor and IUP STEAMSHOP
Director,
Indiana University of
Pennsylvania

Dr. Jason SimmsResearch Computing
Manager,
Swarthmore College

PA-DMZ PROJECT OVERVIEW

- Frictionless Network (DMZ)
 - Goal <u>establish the foundation</u> for a statewide Pennsylvania Regional Science DMZ (PA-DMZ) that enables and enhances access for under resourced PA institutions of higher education to cyberinfrastructure-based resources and services in support of science driven research and education applications.
- Grant supports
 - Networking hardware and connectivity
 - Installation and support for 2+ years (organizations to provide support years 3-5)
 - Broader Impacts and Research Enablement
- Grant Link: https://new.nsf.gov/funding/opportunities/campus-cyberinfrastructure-cc

PA-DMZ PROJECT OVERVIEW



- \$1.1M funding NSF Award #2346589
- 6 partners
- Under-resourced Institution Current-Future State
 - Existing 1-2Gb/s Internet only
 - * Adding 10/25Gb/s router, 10Gb/s Internet2, with 10G perfSONAR and 10G DTNs
- 2-year award PLUS 1-year NCE
 - 2024 Team Formation, Site Visits, Requirements, Design, Procurement
 - 2025 Install and Operational, Research Enablement
 - 2026 Expansion and Sustainment Plan

PA-DMZ CURRENT STATE

PA-DMZ NEXT STATE

USE CASE SUMMARY

- Current 10 Initial Use Cases
 - Biology
 - Chemistry
 - Math and Computer Science
 - Psychology
 - Visual Neuroscience
- Others include:
 - CyberSecurity, Linguistics, Smart Manufacturing

SCIENCE DRIVER IMPACT

PRE:

Establish a Baseline by gathering existing data transfer bottleneck or limitations

IMPLEMENTATION:

Measure Total Science Data Transferred

POST:

How has Science Improved both quantitatively and qualitatively?

MATH & COMP. SCI. USE CASE

Science Driver Description and Needs

- Al machine learning training large learning models for classification or prediction.
- 10 TB data sets stored in an old electronics factory - not wellconnected to the campus
- Fast connect back to HPC and storage

Key Data/Computational Challenges

- High speed campus bandwidth but access ports in offices/classrooms limited to 1Gig.
- RAID backup option for large datasets, more remote compute options - cloud based storage and remote compute options.

Projected Value

 Data sets will be securely shared outside of IUP to support remote access by IUP students for research and remote training activities with other colleges and local businesses

BIOLOGY USE CASE

Science Driver Description and Needs

- Images from a confocal microscope located on campus.
- Using portable hard drives to move data -- Slow and Error Prone
- Generating hundreds of images of 100GB each
- Archive such images automatically after a set time.

Key Data/Computational Challenges

 Use Globus client on that system to watch a directory and move files automatically to HPC for analysis.

Projected Value

 Capture machines and internet sources; currently going to student laptops, etc. but project provides ability to centralize on the HPC

CHEMISTRY USE CASE

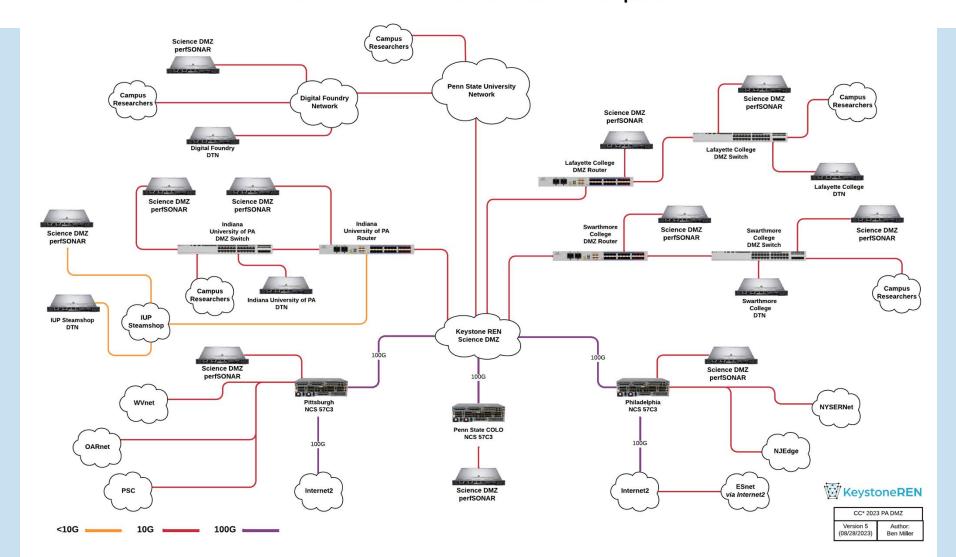
Science Driver Description and Needs

- Multiple TB of CryoEM data stored on a servers at other institutions
- Transfer to local campus is always failing.
- Project continues to scale making problem worse.

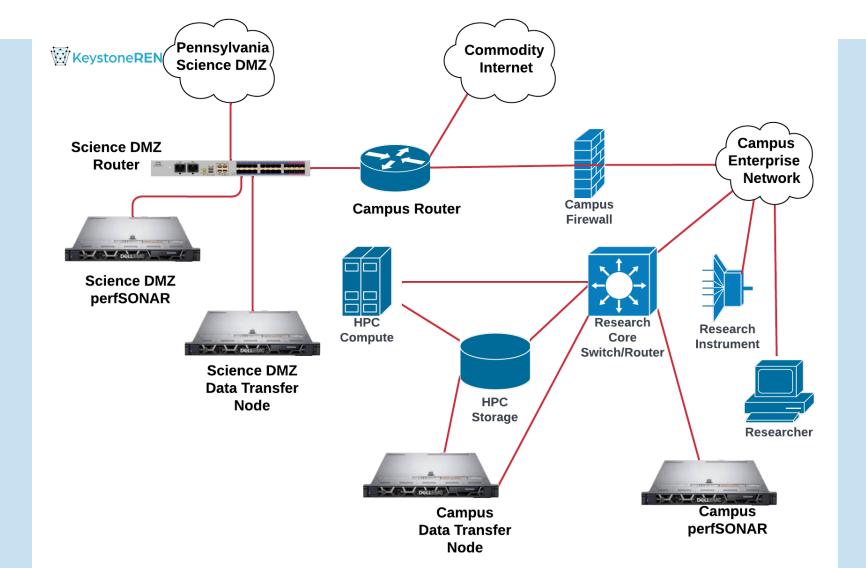
Key Data/Computational Challenges

- Need to transfer to local servers to process data on CryoSPARC
- Need local storage for results and raw data

Projected Value

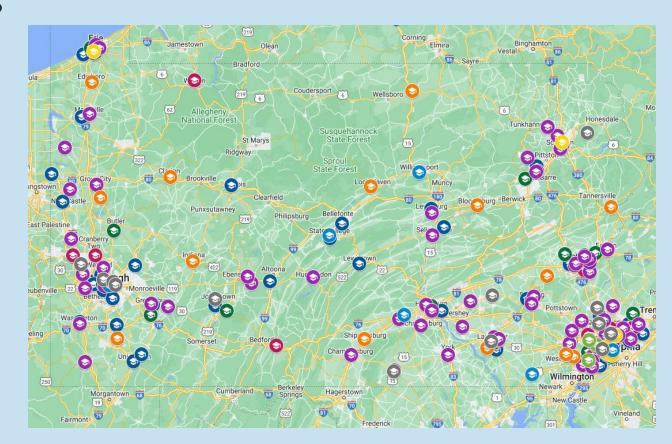

 Enables projects and research to scale enabling larger grant submissions and collaborations

NETWORK DIAGRAM


CC* 2023 - PA-DMZ Backbones to Participants

NETWORK DIAGRAM

PA-DMZ TECHNICAL OVERVIEW


- CyberSecurity
- perfSONAR testing IPv4 and IPv6
- Data Transfer Node testing
 - Data Transfer Scorecard
- Globus Transfers

PA-DMZ PROJECT EXPANSION

- PA has received over 20 CC* awards as of Jan 2024
- Most of the higher ed institutions are under-resourced
- Chance to make a change
 - Conference Presentations
 - CyberAccelerate Workshops over 80 attendees
 - CyberAccelerate Roadshow
 - IT Training
 - >30 additional institutions contacted

THANKYOU

Questions